Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A1c concentrations in type 2 diabetes

Does inhaled insulin added to or replacing 2 oral agents reduce haemoglobin A1c (HbA1c) concentrations in type 2 diabetes?

METHODS

TREATMENT

Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A1c (HbA1c) concentrations in type 2 diabetes

MAIN RESULTS

At 12 weeks, patients in each of the inhaled insulin groups had greater reductions in mean HbA1c, fasting plasma glucose, and 2 hour postprandial glucose concentrations than patients in the dual oral therapy group. More patients achieved HbA1c concentrations <8% and <7% in the inhaled insulin plus dual oral therapy group and the inhaled insulin monotherapy group, respectively, than in the dual oral therapy group (table). The 2 inhaled insulin groups had higher rates of hypoglycaemia than the dual oral therapy group (table).

CONCLUSION

Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A1c concentrations in type 2 diabetes.

A modified version of this abstract appears in Evidence-Based Medicine.

Commentary

Reducing the burden of daily diabetes management for patients is a concern for all practitioners. Achieving optimal glycemic control in type 2 diabetes can be complicated by the progressive nature of the disease, warranting more treatment over time to minimise complications. Patients are often reluctant to move to insulin injections, perceiving them as punitive for failed attempts at diabetes management. Alternatives such as inhaled insulin are seductive because of their potential to improve patient acceptance of treatment options, but the need for clinical trials to establish their safety and effectiveness cannot be understated. Studies such as the one by Rosenstock et al are necessary before we can promote widespread use of inhaled insulin. The study met the minimum duration of 10 weeks needed for glycated haemoglobin to reliably reflect changes in glycemic control. It showed promising reductions in HbA1c concentrations, although these must be weighed against the consequences of the increased incidence of hypoglycaemia with the inhaled route. Clearly, longer follow up is needed to establish the safety of inhaled insulin in patients with compromised lung function and to identify long term side effects in the lung. The study by Rosenstock et al, however, moves us closer to alternative delivery routes for insulin administration.

Linda J Patrick, RN, PhD Faculty of Nursing, University of Windsor Windsor, Ontario, Canada

Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A1c concentrations in type 2 diabetes

Evid Based Nurs 2006 9: 49
doi: 10.1136/ebn.9.2.49

Updated information and services can be found at:
http://ebn.bmj.com/content/9/2/49

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://ebn.bmj.com/content/9/2/49#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Diabetes (189)
- Metabolic disorders (155)
- Pregnancy (254)
- Reproductive medicine (335)
- Diet (216)
- Drugs misuse (including addiction) (75)
- Health education (333)
- Smoking (162)
- Tobacco use (163)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/