Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A₁c concentrations in type 2 diabetes

Q Does inhaled insulin added to or replacing 2 oral agents reduce haemoglobin A₁c (HbA₁c) concentrations in type 2 diabetes?

METHODS

Design: randomised controlled trial.
Allocation: concealed.
Blinding: unblinded.
Follow up period: 12 weeks.
Setting: 48 outpatient centres in the US and Canada.

Patients: 309 outpatients 35–80 years of age (mean age 57 y, 65% men) who were diagnosed with type 2 diabetes >1 year earlier, were treated with a stable oral agent regimen of 2 antidiabetic medications (1 insulin secretagogue and 1 insulin sensitisate), and had HbA₁c concentrations of 8–11%. Exclusion criteria were predisposition to severe hypoglycaemia; hospital admission or emergency department visit for poor diabetic control in the past 6 months; body mass index >35 kg/m²; clinically significant respiratory disease or major organ system disease; smoking in the past 6 months; abnormal pulmonary function, electrocardiography, or laboratory result; systemic glucocorticoid therapy; substance abuse; previous inhaled insulin use; or pregnancy, lactation, or planned pregnancy.

Intervention: inhaled insulin (doses based on patient’s weight and degree of glycaemic control and given within 10 min before meals) plus 2 oral agents (dual oral therapy) (n = 102); inhaled insulin monotherapy (n = 105); or dual oral therapy (n = 102).

Outcomes: change in HbA₁c concentration. Secondary end points included changes in fasting plasma glucose and 2 hour postprandial glucose concentrations, acceptable (HbA₁c <8%) or good (HbA₁c <7%) glycaemic control, and hypoglycaemia.

Patient follow up: 96% included in intention to treat analysis.

MAIN RESULTS

At 12 weeks, patients in each of the inhaled insulin groups had greater reductions in mean HbA₁c, fasting plasma glucose, and 2 hour postprandial glucose concentrations than patients in the dual oral therapy group. More patients achieved HbA₁c concentrations <8% and <7% in the inhaled insulin plus dual oral therapy group and the inhaled insulin monotherapy group, respectively, than in the dual oral therapy group (table). The 2 inhaled insulin groups had higher rates of hypoglycaemia than the dual oral therapy group (table).

CONCLUSION

Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A₁c concentrations in type 2 diabetes.

A modified version of this abstract appears in Evidence-Based Medicine.

Commentary

Reducing the burden of daily diabetes management for patients is a concern for all practitioners. Achieving optimal glycaemic control in type 2 diabetes can be complicated by the progressive nature of the disease, warranting more treatment over time to minimise complications. Patients are often reluctant to move to insulin injections, perceiving them as punitive for failed attempts at diabetes management. Alternatives such as inhaled insulin are seductive because of their potential to improve patient acceptance of treatment options, but the need for clinical trials to establish their safety and effectiveness cannot be understated. Studies such as the one by Rosenstock et al are necessary before we can promote widespread use of inhaled insulin. The study met the minimum duration of 10 weeks needed for glycated haemoglobin to reliably reflect changes in glycaemic control. It showed promising reductions in HbA₁c concentrations, although these must be weighed against the consequences of the increased incidence of hypoglycaemia with the inhaled route. Clearly, longer follow up is needed to establish the safety of inhaled insulin in patients with compromised lung function and to identify long term side effects in the lung. The study by Rosenstock et al, however, moves us closer to alternative delivery routes for insulin administration.

Linda J Patrick, RN, PhD
Faculty of Nursing, University of Windsor
Windsor, Ontario, Canada

Inhaled insulin plus 2 oral agents (II2A) and inhaled insulin monotherapy (II) v 2 oral agents (2A) for type 2 diabetes*

<table>
<thead>
<tr>
<th>Outcomes at 12 weeks</th>
<th>Comparison</th>
<th>Event rates</th>
<th>RBI (95% CI)</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin A₁c concentration <8%</td>
<td>II2A v 2A</td>
<td>86% v 19%</td>
<td>35% (207 to 609)</td>
<td>2 (2 to 2)</td>
</tr>
<tr>
<td></td>
<td>II v 2A</td>
<td>56% v 19%</td>
<td>198 (93 to 372)</td>
<td>3 (3 to 5)</td>
</tr>
<tr>
<td>Haemoglobin A₁c concentration <7%</td>
<td>II2A v 2A</td>
<td>32% v 1%</td>
<td>2972 (454 to 17536)</td>
<td>4 (3 to 5)</td>
</tr>
<tr>
<td></td>
<td>II v 2A</td>
<td>17% v 1%</td>
<td>1300 (182 to 9260)</td>
<td>7 (5 to 12)</td>
</tr>
</tbody>
</table>

| Hypoglycaemia | II2A v 2A | 78% v 8.3% | 836% (396 to 1734) | 2 (2 to 2) |
| | II v 2A | 68% v 8.3% | 712% (327 to 1498) | 2 (2 to 3) |

*Abbreviations defined in glossary; event rates, RBI, RRI, NNT, NNH, and CI calculated from data in article.
Inhaled insulin added to or replacing 2 oral agents reduced haemoglobin A1c concentrations in type 2 diabetes

Evid Based Nurs 2006 9: 49
doi: 10.1136/ebn.9.2.49

Updated information and services can be found at:
http://ebn.bmj.com/content/9/2/49

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://ebn.bmj.com/content/9/2/49#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Diabetes (189)
- Metabolic disorders (155)
- Pregnancy (254)
- Reproductive medicine (335)
- Diet (216)
- Drugs misuse (including addiction) (75)
- Health education (333)
- Smoking (162)
- Tobacco use (163)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/