Review: regular inhaled short acting β₂ agonists improve lung function in stable chronic obstructive pulmonary disease

Is regular treatment with inhaled short acting β₂ agonists (ISABAs) effective for stable chronic obstructive pulmonary disease (COPD)?

METHODS

Data sources: Cochrane Collaboration trials register up to and including May 2002 and reference lists of review articles and retrieved studies.

Study selection and assessment: randomised, placebo controlled trials of ISABAs given to patients with stable COPD for 7 days. Individual study quality was assessed on the basis of allocation concealment.

Outcomes: forced expiratory volume in 1 second (FEV₁), forced vital capacity (FVC), peak expiratory flow rate (PEFR), breathlessness (visual analogue scale), treatment failure, and patient preference.

MAIN RESULTS

13 crossover trials met the selection criteria (n = 237, age range 56–70 y). Patients were primarily men, and study duration ranged from 1–8 weeks. Drugs assessed were isoproterenol, terbutaline, and salbutamol; most were administered using pressurised metered dose inhalers or other hand held inhalers. Meta-analysis showed that patients who received ISABAs had improved post-bronchodilator FEV₁, FVC, morning and evening PEFR, and breathlessness scores; and fewer treatment failures (table). Patients preferred ISABAs to placebo (table).

CONCLUSION

Regular inhaled short acting β₂ agonists for 7 days improve post-bronchodilator lung function and reduce breathlessness in patients with stable chronic obstructive pulmonary disease.

A modified version of this abstract appears in ACP Journal Club.

For correspondence: Dr F S F Ram, National Collaborating Centre of Women and Children’s Health, London, UK. fsfram@yahoo.co.uk

Source of funding: the Netherlands Asthma Foundation.

Table: Outcomes at 1–8 weeks

<table>
<thead>
<tr>
<th>Outcomes at 1–8 weeks</th>
<th>Number of trials (n)</th>
<th>Weighted mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁ (l)†</td>
<td>6 (196)</td>
<td>0.14 (0.04 to 0.25)</td>
</tr>
<tr>
<td>FVC (l)†</td>
<td>4 (116)</td>
<td>0.30 (0.02 to 0.58)</td>
</tr>
<tr>
<td>Morning PEFR (l/min)†</td>
<td>4 (124)§</td>
<td>29.17 (0.25 to 58.09)</td>
</tr>
<tr>
<td>Evening PEFR (l/min)†</td>
<td>3 (86)§</td>
<td>36.75 (2.56 to 70.94)</td>
</tr>
</tbody>
</table>

| Breathlessness (100 mm visual analogue score) | 4 (94)§ | 1.33 (1.01 to 1.65) |

<table>
<thead>
<tr>
<th>Standardised mean difference (CI)</th>
<th>RBI (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment failure‡</td>
<td>5 (198)</td>
</tr>
<tr>
<td>Patient preference for β₂ agonists over placebo</td>
<td>4 (158)</td>
</tr>
</tbody>
</table>

Notes:

β₂ agonists are frequently used as a first line treatment for COPD to maximise bronchodilation and minimise dyspnoea.¹ The use of short acting versus long acting β₂ agonists remains somewhat controversial because bronchodilators cause only small increases in FEV₁. These drugs improve symptoms by reducing hyperinflation and thus reducing dyspnoea, but often with little effect on spirometry measurements.² The review by Ram and Sestini attempted to clarify the effects of ISABAs compared with placebo.

Only 13 trials met the inclusion criteria. All were randomised crossover trials that assessed ISABAs alone or in combination with other drugs. Anticholinergic drugs such as ipratropium bromide have generally been considered more effective for treatment of COPD because they have fewer side effects, slower onset of action, and longer duration of action.³ Ram and Sestini suggest that ISABAs offer an inexpensive and effective treatment for the management of stable COPD, although the practical issue of the effectiveness of ISABAs compared with other bronchodilators (eg, long acting β₂ agonists) remains unanswered. However, many patients with COPD have specific intolerances and contraindications that require customising COPD management using a stepwise approach based on severity of airway symptoms. Thus, primary care providers should continue to tailor selection of bronchodilators for treatment of COPD based on the individual requirements of patients. Use of any treatment should, of course, include close monitoring of patient symptoms, FEV₁, exercise tolerance, oxygen saturation, and responses to bronchodilator treatment.

Bruce Leonard, PhD, RN, FNP, NP-C, BC School of Nursing, University of Texas Medical Branch Galveston, Texas, USA

Commentary

TREATMENT

OUTCOMES

- **FEV₁:** forced expiratory volume in 1 second
- **FVC:** forced vital capacity
- **PEFR:** peak expiratory flow rate
- **Breathlessness:** visual analogue scale
- **Treatment failure:** number of dropouts because of worsening symptoms

Abbreviations:
- **CI:** confidence interval
- **RR:** relative risk
- **NNT:** number needed to treat

Formulae:

- **RR (CI):** calculated from relative risk and control event rate in article.
- **NNT (CI):** calculated from relative risk and control event rate in article.
Review: regular inhaled short acting β_2 agonists improve lung function in stable chronic obstructive pulmonary disease

Evid Based Nurs 2004 7: 50
doi: 10.1136/ebn.7.2.50

Updated information and services can be found at:
http://ebn.bmj.com/content/7/2/50

These include:

References
This article cites 4 articles, 1 of which you can access for free at:
http://ebn.bmj.com/content/7/2/50#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Asthma (87)
- Drugs: CNS (not psychiatric) (82)
- Drugs: respiratory system (37)
- General practice / family medicine (262)
- Immunology (including allergy) (328)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/