EBN users’ guide

Evaluation of studies of treatment or prevention interventions. Part 2: applying the results of studies to your patients

In the previous article in this users’ guide series, we began to look at how a critical appraisal checklist could be used to help to decide whether a piece of research is sufficiently valid for its results to be applied to patients. This article continues the appraisal of the same study but focuses on its results to answer the questions:

What were the results?
- How large was the treatment effect?
- How precise is the estimate of treatment effect?

Will the results help me in caring for my patients?
- Are my patients so different from those in the study that the results don’t apply?
- Is the treatment feasible in our setting?
- Were all clinically important outcomes (harms as well as benefits) considered?

Review of the clinical scenario
You are a diabetes specialist nurse who, along with podiatrist colleagues, runs a foot care clinic for people with diabetes. A patient presents at the clinic with a full thickness plantar foot ulcer without any sign of arterial disease. The patient is enthusiastic to try an artificial skin replacement as she has read about it. You are unfamiliar with this type of wound covering, and you search for the best available evidence identified no systematic review and one randomised controlled trial (RCT). You are now getting to grips with this RCT before the patient’s next visit.

WHAT WERE THE RESULTS?
The aim of this part of the appraisal is to help the reader to judge whether the results of an individual study are important. This decision takes into account the size of the treatment effect and whether the estimate of the treatment effect is precise.

How large was the treatment effect?
The effects of individual treatments are measured using one or more outcome measures. Previous EBN notebooks have described how outcome measures can be dichotomous (eg, yes or no, dead or alive, healed or not healed) or continuous (eg, length of stay, daily intake of fruits and vegetables), and how these measures are presented and analysed. By way of brief review, we can look again at the results of a trial of a nurse led, structured discharge package given to children with asthma on leaving hospital. At 6 months follow up, 15% of children in the intervention group had been readmitted to hospital (experimental event rate or EER) compared with 38% in the control group (control event rate or CER). Although the accompanying p value of 0.001 tells us that the difference between groups was statistically significant, the information it provides is of limited usefulness. There are, however, alternative ways of expressing the same data. The relative risk reduction (RRR) is the proportional reduction in rates of bad outcomes between experimental and control participants in a trial and is calculated as (CER – EER)/CER = (38 – 15)/38 = 23/38 = 0.60, meaning a 60% reduction in the relative risk of hospital readmission. The relative risk does not take into account the number of children who would have been readmitted anyway—this is captured by the absolute risk reduction (ARR), which is the CER – EER, ie, 38 − 15 or 23%. This absolute difference in risk tells us how much of the effect is a result of the intervention itself. A third approach to presenting the same data is to report the number needed to treat (NNT). This gives the reader an impression of the effectiveness of the intervention by describing the number of people who must be treated with the given intervention in order to prevent 1 additional bad outcome (or to promote 1 additional good outcome). The NNT is simply calculated as the inverse of the ARR, rounded up to the nearest whole number; in the case of the asthma trial 1/23 = 5 (95% CI 3 to 12). Put into words, this means that 1 additional hospital readmission within 6 months of discharge would be prevented for every 5 children who receive the nurse led, structured discharge package, and we have 95% confidence that the true NNT value may be as low as 3 and as high as 12. When properly presented, reports of NNTs should incorporate a description of the follow up time, and also the 95% CI around the NNT estimate. The next issue of Evidence-Based Nursing will include a more detailed discussion of using NNTs in clinical practice.

When reading reports of statistically significant differences in treatment effects, it is always important to ask oneself whether the difference is clinically important. It is quite possible for a statistically significant difference to be unimportant, either because the outcome measure is unimportant or because the difference is too small to be noticed by the patient or to warrant a change in practice. For example, a systematic review of antibiotics for sore throat concluded that antibiotics shortened symptom duration by approximately 8 hours, which is probably clinically insignificant when compared with the problems of overuse of antibiotics.

Many published RCTs do not find a statistically significant difference between 2 treatments. These trials are just as informative as those with significant differences, if the studies were large enough to detect a significant difference if one existed. A review of 2000 trials of treatments for schizophrenia reported that the average number of participants in a schizophrenia trial was 65. The authors estimated that only 3% of these studies were large enough to detect a 20% improvement in mental state between groups (for which 150 patients in each arm of a trial would be needed). The true effect of a treatment can never really be known. Instead, we use the results of trials, which are estimates of effect. Each estimate is a neighbour of the true treatment effect—the
measures of outcomes are ties targeted by the intervention. It is also important that indirect RCTs is that they should reassure themselves that the outcomes to capture different elements of study participants’ responses to treatment. Typically these might include measures of quality of life (2 treatments may have a differential effect on this), costs, or ulcer recurrence. 39% of patients who received the artificial skin dressing had healed ulcers at 12 weeks compared with 32% of patients who received traditional dressings. This difference was not statistically significant (p = 0.138). The authors then described how at an early point in the research they discovered that only 60% (76 of 126) of patients in the experimental group had received pieces of artificial skin that were “active”; 49% of the patients who received active artificial skin on at least their first treatment (37 of 76) had healed ulcers by 12 weeks compared with 32% of patients in the control group. This difference was statistically significant (p = 0.008). This result, however, should be treated with caution as although this subgroup analysis was planned at an early stage of the study, it is the opposite of intention to treat analysis, and subverts the randomisation (because a large proportion of patients were discarded from one of the groups). You are not prepared to use this treatment on the basis of this subgroup analysis, although the result, if true, would equate to an ARR of 49% – 32% = 17%, and an NNT over 12 weeks follow up of 1/17 = 6 (95% CI 3 to 32). Instead, you describe to your patient the shortcomings of the current evidence and vow to watch for further evaluations of this new treatment.

Resolution of the scenario

Returning to the study by Naughton et al on artificial skin, we see that the effect of the new dressing was measured in terms of the number of ulcers completely healed after 12 weeks of treatment. This outcome is highly objective, requires no complex measurement procedure, and is likely to be an outcome that matters to patients. The authors of this RCT did not report other important outcomes such as quality of life (2 treatments may have a differential effect on this), costs, or ulcer recurrence. 39% of patients who received the artificial skin dressing had healed ulcers at 12 weeks compared with 32% of patients who received traditional dressings. This difference was not statistically significant (p = 0.138). The authors then described how at an early point in the research they discovered that only 60% (76 of 126) of patients in the experimental group had received pieces of artificial skin that were “active”; 49% of the patients who received active artificial skin on at least their first treatment (37 of 76) had healed ulcers by 12 weeks compared with 32% of patients in the control group. This difference was statistically significant (p = 0.008). This result, however, should be treated with caution as although this subgroup analysis was planned at an early stage of the study, it is the opposite of intention to treat analysis, and subverts the randomisation (because a large proportion of patients were discarded from one of the groups). You are not prepared to use this treatment on the basis of this subgroup analysis, although the result, if true, would equate to an ARR of 49% – 32% = 17%, and an NNT over 12 weeks follow up of 1/17 = 6 (95% CI 3 to 32). Instead, you describe to your patient the shortcomings of the current evidence and vow to watch for further evaluations of this new treatment.

NICKY CULLUM, RN, PhD
Centre for Evidence Based Nursing
Department of Health Studies
University of York
york, UK

Evaluation of studies of treatment or prevention interventions. Part 2: applying the results of studies to your patients
Nicky Cullum

Evid Based Nurs 2001 4: 7-8
doi: 10.1136/ebn.4.1.7

Updated information and services can be found at:
http://ebn.bmj.com/content/4/1/7

These include:

References
This article cites 7 articles, 6 of which you can access for free at:
http://ebn.bmj.com/content/4/1/7#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Child health (466)
- Asthma (87)
- Diabetes (189)
- Immunology (including allergy) (328)
- Dermatology (116)
- Trauma (135)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/